25 research outputs found

    Learning a Deep Listwise Context Model for Ranking Refinement

    Full text link
    Learning to rank has been intensively studied and widely applied in information retrieval. Typically, a global ranking function is learned from a set of labeled data, which can achieve good performance on average but may be suboptimal for individual queries by ignoring the fact that relevant documents for different queries may have different distributions in the feature space. Inspired by the idea of pseudo relevance feedback where top ranked documents, which we refer as the \textit{local ranking context}, can provide important information about the query's characteristics, we propose to use the inherent feature distributions of the top results to learn a Deep Listwise Context Model that helps us fine tune the initial ranked list. Specifically, we employ a recurrent neural network to sequentially encode the top results using their feature vectors, learn a local context model and use it to re-rank the top results. There are three merits with our model: (1) Our model can capture the local ranking context based on the complex interactions between top results using a deep neural network; (2) Our model can be built upon existing learning-to-rank methods by directly using their extracted feature vectors; (3) Our model is trained with an attention-based loss function, which is more effective and efficient than many existing listwise methods. Experimental results show that the proposed model can significantly improve the state-of-the-art learning to rank methods on benchmark retrieval corpora

    Unbiased Learning to Rank with Unbiased Propensity Estimation

    Full text link
    Learning to rank with biased click data is a well-known challenge. A variety of methods has been explored to debias click data for learning to rank such as click models, result interleaving and, more recently, the unbiased learning-to-rank framework based on inverse propensity weighting. Despite their differences, most existing studies separate the estimation of click bias (namely the \textit{propensity model}) from the learning of ranking algorithms. To estimate click propensities, they either conduct online result randomization, which can negatively affect the user experience, or offline parameter estimation, which has special requirements for click data and is optimized for objectives (e.g. click likelihood) that are not directly related to the ranking performance of the system. In this work, we address those problems by unifying the learning of propensity models and ranking models. We find that the problem of estimating a propensity model from click data is a dual problem of unbiased learning to rank. Based on this observation, we propose a Dual Learning Algorithm (DLA) that jointly learns an unbiased ranker and an \textit{unbiased propensity model}. DLA is an automatic unbiased learning-to-rank framework as it directly learns unbiased ranking models from biased click data without any preprocessing. It can adapt to the change of bias distributions and is applicable to online learning. Our empirical experiments with synthetic and real-world data show that the models trained with DLA significantly outperformed the unbiased learning-to-rank algorithms based on result randomization and the models trained with relevance signals extracted by click models

    A Transformer-based Embedding Model for Personalized Product Search

    Full text link
    Product search is an important way for people to browse and purchase items on E-commerce platforms. While customers tend to make choices based on their personal tastes and preferences, analysis of commercial product search logs has shown that personalization does not always improve product search quality. Most existing product search techniques, however, conduct undifferentiated personalization across search sessions. They either use a fixed coefficient to control the influence of personalization or let personalization take effect all the time with an attention mechanism. The only notable exception is the recently proposed zero-attention model (ZAM) that can adaptively adjust the effect of personalization by allowing the query to attend to a zero vector. Nonetheless, in ZAM, personalization can act at most as equally important as the query and the representations of items are static across the collection regardless of the items co-occurring in the user's historical purchases. Aware of these limitations, we propose a transformer-based embedding model (TEM) for personalized product search, which could dynamically control the influence of personalization by encoding the sequence of query and user's purchase history with a transformer architecture. Personalization could have a dominant impact when necessary and interactions between items can be taken into consideration when computing attention weights. Experimental results show that TEM outperforms state-of-the-art personalization product retrieval models significantly.Comment: In the proceedings of SIGIR 202

    CIR at the NTCIR-17 ULTRE-2 Task

    Full text link
    The Chinese academy of sciences Information Retrieval team (CIR) has participated in the NTCIR-17 ULTRE-2 task. This paper describes our approaches and reports our results on the ULTRE-2 task. We recognize the issue of false negatives in the Baidu search data in this competition is very severe, much more severe than position bias. Hence, we adopt the Dual Learning Algorithm (DLA) to address the position bias and use it as an auxiliary model to study how to alleviate the false negative issue. We approach the problem from two perspectives: 1) correcting the labels for non-clicked items by a relevance judgment model trained from DLA, and learn a new ranker that is initialized from DLA; 2) including random documents as true negatives and documents that have partial matching as hard negatives. Both methods can enhance the model performance and our best method has achieved nDCG@10 of 0.5355, which is 2.66% better than the best score from the organizer.Comment: 5 pages, 1 figure, NTCIR-1
    corecore